

Vertical

 Platform Lift Troubleshooting GuideVersion 2.04 - Residential

Americlide
 ACCESSIBILITY SOLUTIONS

- Start up conditions are needed every time the unit stops working.
- Perform testing with a test-light or A DC electrical tester
- Measure the startup condition to ensure the power flow trough all safety devices
- Take time to investigate the cause of circuit aperture
- Take many measurement to ensure repeatability when a measurement is not as per spec
- Voltage should be stable along all safety line, if a noticeable voltage drop is found at a terminal, this may indicate a contact resistance in this device
- Voltage should be stable along all safety line during move, if voltage drop is found at a terminal, this can prevent any device such as the motor contactor from being energized properly.
- If an issue is found only during move, startup conditions may be measured during move

Test Light

Probe

Electrical Tester

Startup Conditions－ Using Electrical Tester

$$
\begin{aligned}
& \text { (11) "ハいい ハ }
\end{aligned}
$$

H	TERMINAL	Vdc	DIASMS
1）	RIGTTSIDEF1	24	CHECKSUPPLY（ BATIERY BANK OR TRANSFORMER ）
（2）	LFTSIDE F1	24	MAINFUSEPU1 IS BLOW，CHECK OVERLOAD ONMDTOR BRANCH
（3）	BRK1－1	24	OPENCIRCUIT（ FU1 TO BKR1 INSIDE ENCLOSURE ）
4）	BRK1－2	24	SHORT OR OVERLOAD ONCONIROL BRANCH
5）	CN15－3	24	OPENCIRCUT（ BRK2 TOCN15－3 INSIDE ENCLOSURE ）
6	CN15－4	24	DISCONNECT MEANIS OPEN（ ENCLOSED SWITCH，OR KEY SWITCHONSIDE OF TOWER）
（7）	CN16－1	24	OPENCIRCUT（ CN15－4 TOCN16－1 INSIDE ENCLOSURE ）
8）	CN16－2	24	SAETY NUT FAILURE OR EXIREME HIGHSWITCH（FOSWITCHOREHSWITCH）
9	CN15－1	24	OPENCIRCUT（ CN16－2 TOCN15－1 INSIDE ENCLOSURE ）
10	CN15－2	24	EMERGENCY STOP BUTTON ENGAGED BOTTOMOFRUNWAY（ ESP ，LANDINGSIDE OFTOWER ）
11）	CN16－12	24	OPENCIRCUT（ CN15－2 TO CN16－12 INSIDE ENCLOSURE ）
（12）	CN16－13	24	EMERGENCY STOP BUTTON ENGAGED CAR（ ESC ，NEAR CARRIAGE OPERATINGDEVICE ）
（13）	CN16－14	24	OPENCIRCIT（ CN16－13 TOCN16－14 INSIDE ENCLOSURE ）
（14）	CN16－15	24	LOWER LANDING INIERLOCK CONTACT OPEN（ I1，INIERLOCK CONTACT ）
15	CN15－18	24	OPENCIRCUT（ CN16－15 TOCN15－18 INSIDE ENCLOSURE ）
10）	CN15－19	24	UPPER LANDING \mathbb{N} IERLOCK CONTACT OPEN（ $\mathrm{L}, \mathrm{INIERLOCK} \mathrm{CONTACT} \mathrm{)}$
17	CN16－6	24	OPENCIRCUT（ MRA－2 TOCN16－6 INSIDE ENCLOSURE ）
18	CN15－24	24	OPENCIRCUT（ CN16－6 TOCN15－24 INSIDE ENCLOSURE ）
19）			

Startup Conditions - Using Electrical Tester

$\#$	TERMINAL	ON	DIAGNSTIC (IF TGMTOFF)
(1)	RIGHT SIDE PU1	ON	CHECK SUPPLY (BATTERY BANK OR TRANSFORMER)
(2)	மTT SIDEFU1	ON	MAIN FUSE FU1 IS BLOW, CHECK OVERLOAD ON MOTOR BRANCH
(3)	BRK1-1	ON	OPEV CIRCIT (FU1 TO BKR1 INSIDE EVCOSURE)
(4)	BRK1-2	ON	SHORT OR OVERLOAD ON CONIROL BRANCH
(5)	ON15-3	ON	OPEV CIRCIT (BRK2 TO CN15-3 INSIDE EVCLOSURE)
6	CN15-4	ON	DISCONNECT MEAN IS OPEN (ENCOSED SWITCH, OR KEY SWITCH ON SIDE OF TOWER)
(7)	ON16-1	ON	OPEN UROIT (CN15-4 TO CN16-1 INSIDE ENOOSURE)
(8)	CN16-2	ON	SAEIY NUT FAILURE OR EXTREME HIGH SWICH(FO SWTCH OR E SWITCH)
9	CN15-1	ON	OPEN UROIT (CN16-2 TO CN15-1 INSIDE ENCOSURE)
(10)	CN15-2	ON	EMERGENCY STOP BUTTON ENGAGED BOTTOM OF RUNWAY (ESP , LANDING SIDE OF TOWER)
(11)	ON16-12	ON	OPEN CIRCIT (ON15-2 TO ON16-12 INSIDE EVCOSURE)
(12)	ON16-13	ON	EMERGENCY STOP BUTTON ENGAGED CAR (ESC, NEAR CARRIAGE OPERATING DEVIC)
(13)	ON16-14	ON	OPEN CIRCIT (CN16-13 TO CN16-14 INSIDE ENCLOSURE)
(14)	ON16-15	ON	LOWER LANDING INIERLOCK CONTACT OPEN (I1, INTIERLOCK CONTACT)
(15)	ON15-18	ON	OPEN CIRCIT (ON16-15 TO CN15-18 INSIDE ENCLOSURE)
(16)	ON15-19	ON	UPPER LANDING INIERLOCK CONTACT OPEN (I2, INIERLOCK CONTACT)
[17)	CN16-6	ON	OPEN CIRCIT (NRA-2 TOCN16-6 INSIDE ENCLOSURE)
(18)	ON15-24	ON	OPEN CIRCIT (ON16-6 TO CN15-24 INSIDE EVCOSURE)
(19)			

Unit is Missing Supply Power on Main Branch (DC1)

IF FU1 IS MISSING DC POWER, THE MAINS SUPPLY SOURCE IS NOT DELIVERING POWER TO THE ELEVATOR.

- Determine if the unit is equipped with a battery bank or power transformer
- If unit is equipped with a battery bank, check if the battery bank is provided with a single or dual charger
- Refer to the appropriate section for further troubleshooting

Battery Bank

- Unplug charger for Battery powered unit
- Confirm each battery hold a MIN of 12Vdc on each battery separately
- A dead battery may mean that the charger is not working properly
- A dead set of battery will need for a battery bank replacement (Typically 3 to 5 Years of service)

Unit is Missing Supply Power on Battery Bank (DC1)

- Confirm charger is charging battery bank to a voltage of 27 Vdc min
- Confirm charger is supplied with 120Vac
- A dead battery may mean that the charger is not working properly
- A dead set of battery will need for a battery bank replacement (Typically 3 to 5 Years of service)

Dual Charger

- Confirm each charger is charging each battery to a voltage of 12.5 Vdc
- Confirm each charger is supplied with 120 Va
- A dead battery may mean that the charger is not working properly
- A dead set of battery will need for a battery bank replacement (Typically 3 to 5 Years of service)

Unit is Missing Supply Power on Transformer (DC1)

Power Transformer

- Confirm the 120 Vac is present at the transformer primary side

2) Main Fuse FU1 is Blown

Battery Bank
 No voltage at BRK1-1

- Verify factory wire between BK1-1 and C1-1 (Blue 18awg wire)

(4) BRK1 is Tripped

No voltage at BRK1-1

- Excessive current flowing in the control branch of the controller, disconnect the different load from the scheme to discover which part is drawing the excessive current.

- Compare impedance of loads with nominal values to determine if the device must be replaced.

- Interlock Solenoid	(S1 \& S2)	(50§)	- DOWN contactor	(C2)	(50ת)
- Main contactor	(M1)	(30ת)	- Relay	(R1 \& R2)	(1000ת)
- UP contactor	(C1)	(30ת)	- TIMER	(R3)	(1000ת)

No voltage at CN15-3

- Verify factory wire between BK1-1 and CN15-3 (Blue 18awg wire)

6 Disconnect Mean is Open

No voltage at CN15-3

- The disconnect mean is open, this can be either the breaker or key switch lower landing side of the tower

- If the disconnect is tripped, the 120 Vac line has experienced an overload over the tripping capacity.
- Ensure no other load than the elevator is connector to the disconnect
- Verify the wiring to the key switch if in the proper working position
- You can confirm the disconnect is faulty by installing temporarily a jumper between (CN15-3 \& CN15-4)

Breaker

Key Switch

No Voltage at CN16-1

No voltage at CN16-1

- Verify factory wire between CN15-6 and CN16-1 inside the panel (Blue 18 awg wire)

(8)
 Extreme Landing Switch Engaged or Nut Failure

No voltage at CN16-1

- Locate the EH safety switch in your tower, either on car sling under the mechanical endstop or on the stack of switch \ddagger for upper landing.
- The extreme switch(EH) is activated. Need to move MANUALLY unit off switch and pull the blue circle pin OUT to reset the safety switch
-

Confirm the switch is wired at the Normally closed terminals

EXTREME HIGH

8A Main Nut Failure Safety Switch Engaged

No voltage at CN16-2

- Nut failure (FO) switch is activated, verify plastic nut for failure
- Nut failure (FO) switch is unplugged, needs to be plugged in NC
- Confirm the (FO) switch is wired at the Normally closed terminals

EXTREME HIGH

SAFETY NUT

9 Open Circuit to CN15-1

No voltage at CN16-1

- Verify factory wire between CN16-2 and CN15-1inside the panel (Blue 18 awg wire)

No voltage at CN15-2

- Emergency stop button on side of the tower is activated, pull out the switch
- Confirm the switch is wired at the Normally closed terminals

No voltage at CN16-12

- Verify factory wire between CN15-2 and CN16-12 inside the panel (Blue 18 awg wire)

12 E-Stop in Car Engaged

No voltage at CN16-13

- Emergency stop button beside carriage operating device is activated, pull out the switch
- Confirm the switch is wired at the Normally closed terminals

CAB E-STOP

No voltage at CN16-14

- Verify factory wire between CN16-13 and CN16-14 inside the panel (Blue 18 awg wire)

14 Open Interlock at Lower Landing

No voltage at CN16-15

- Ensure door is closed and locked at lower landing (11)
- If door is closed and locked but yet there is no voltage at CN16-15, open the interlock and verify that both micro-switches are not activated
- If both switches are not activated but still no voltage. Do a continuity test on each switch inside the interlock at the green connector (A \& B) then (C \& D).
- If there is continuity between these 2 points, verify wiring to controller.

15 Open Circuit to CN15-18

No voltage at CN15-17

- Verify factory wire between CN16-15 and CN15-18 inside the panel (Blue 18 awg wire)

16 Open Interlock at Lower Landing

No voltage at CN16-15

- Ensure door is closed and locked at UPPER landing (I2)
- If door is closed and locked but yet there is no voltage at CN15-19, open the interlock and verify that both micro-switches are not activated
- If both switches are not activated but still no voltage. Do a continuity test on each switch inside the interlock at the green connector. (A \& B) then (C \& D).
- If there is continuity between these 2 points, verify wiring to controller.

No voltage at CN16-6

- Verify factory wire between M2A-2 and CN16-6 inside the panel (Blue 18 awg wire)

18 Open Circuit to CN15-24

No voltage at CN15-24

- Verify factory wire between M2A-2 and CN16-6 inside the panel (Blue 18 awg wire)

